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Abstract

This paper examines the onset of negative gravitactic bioconvection in a porous square cavity. The porous medium is assumed to be
anisotropic in permeability with its principal axes arbitrarily oriented with respect to the gravity vector, and contains a concentration of
microorganisms which are assumed to be swimming upward against gravity (negative gravitaxis). The critical Rayleigh number Rac at
marginal stability is calculated as a function of the microorganism swimming speed Vc, of the anisotropy ratio R, and of the orientation
angle h.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Contrary to Bénard convection which has been widely
studied over the past century, bioconvection [1], which is
a natural phenomenon observed in suspensions of collec-
tive swimming microorganisms constituted from different
species of protozoa, algae, or bacteria, has received grow-
ing interest only during the past few decades. In fact, neg-
ative gravitactic bioconvection is fundamentally analogous
to Bénard convection when the microorganism swimming
speed is very low, in other words, when Vc tends to zero
[2,3].

A model of bioconvection was developed by Childress
et al. [4] for gravitactic microorganisms, based on the
Navier–Stokes equation for fluid flow and the diffusion-
convection equation for the concentration of the motile
microorganisms. They first derived the equilibrium state
resulting from upward swimming and the downward diffu-
sion of the motile organisms in a quiescent fluid. They then
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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determined analytically the critical Rayleigh number for
the onset of convection as well as the preferred wavenum-
ber and growth rates [4].

Kuznetsov and Jiang [5] and Kuznetsov and Avra-
menko [6] considered bioconvection of gravitactic and
gyrotactic microorganisms in an isotropic porous medium,
based on the Pedley et al. model [7] and Whitaker theory
[8]. The Darcy equation and the diffusion-convection equa-
tion were solved numerically to obtain the flow and con-
centration fields in a square cavity in terms of the
permeability of the isotropic porous medium. Other differ-
ent aspects of gyrotactic and oxytactic bioconvection in
porous media are referred to [9–11],

A linear stability analysis of gravitactic bioconvection in
an isotropic porous cavity was completed by Nguyen et al.
[2,12]. By applying a re-normalization approach on a cho-
sen length scale, they deduced a universal curve of linear
stability of gravitactic bioconvection for the case of high
swimming speeds in an isotropic porous medium [2,12].

The present study investigates the onset of negative
gravitactic bioconvection in porous media with the effects
of permeability anisotropy. The effects of different orienta-
tions of the principal axes of an anisotropic medium with
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Nomenclature

Dc cell diffusivity, m2/s
F = L/H shape factor of 2D porous cavity
K second-order tensor of permeability
K1 permeability, m2

K2 lateral permeability, m2

L length of the porous cavity, m
n cell concentration, cells/m3

�n mean cell concentration, cell/m3

n0 cell concentration at the bottom boundary,
cells/m3

n1 cell concentration at the top side, cells/m3

N cell dimensionless concentration
N mean cell dimensionless concentration
H height of the porous cavity, m
P* dynamic pressure, Pa
P dimensionless pressure
Ra Rayleigh number based on the H scale

Ra = gK2HbbDn/mDc

Ra* Rayleigh number based on the Dc=V �c scale
Ra� ¼ gK2Hbb�n=mDc

R anisotropy ratio R = K2/K1
~V � Darcy velocity, m/s
~V �c cell gravitactic swimming speed, m/s
~V dimensionless Darcy velocity~V ¼ H~V �=Dc

~V c cell dimensionless swimming speed ~V c ¼
H~V �c=Dc or Peclet number

(X,Y, t*) Cartesian coordinates, m and time, s
(x,y, t) dimensionless Cartesian coordinates and dimen-

sionless time x = X/H; y = Y/H, t = Dct*/H2

Greek symbols

bb density variation coefficient of suspension
bb = #Dq/q0

Dn cell concentration difference between top and
bottom (cell/m3) Dn = n1 � n0, cells/m3

l dynamic viscosity of fluid (1 N s/m2)
Dq Dq = qc � qw, kg/m3

w* stream function, m2/s
w w = w*/Dc dimensionless stream function
m kinematic viscosity of suspension, m2/s
qw water density, kg/m3

qc cell density, kg/m3

q density of suspension ‘‘fluid-cell”, kg/m3

q0 density of suspension at the bottom of the cav-
ity, kg/m3

h oblique angle of the principal axes – orientation
angle
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respect to the gravity vector are fundamentally important
since this situation frequently occurs in real porous media
systems. For the study of natural convection in porous
media with the effects of permeability anisotropy, we refer
to [13–16].

The results herein highlight the first study of bioconvec-
tion in an anisotropic porous medium as well as provide
insight into several fundamental processes and give direc-
Fig. 1. Axenic culture of gravitactic protozoa Tetrahymena pyriformis.
(Photo taken at the Institute for Biotechnology and Bioengineering,
Centre for Biological Engineering, University of Minho, Portugal by T.
Nguyen-Quang).
tion for our future research involving bioconvection in het-
erogeneous porous media. The results are also relevant to a
number of geophysical and environmental problems
because subsurface media, which contains all five major
groups of microorganisms (bacteria, actinomycetes, fungi,
algae and protozoa) as well as viruses [17], are not ideally
isotropic. The necessity for a model of microbial transport
in heterogeneous media is underlined by Li et al. [18]. The
problem of bioconvection is found in numerous applica-
tions such as the study of the effects of toxins on the nega-
tive gravitactic behavior of the protozoa Tetrahymena

pyriformis (Fig. 1) or Chlamydomonas reinhardtii [19].
2. Formulation of the problem

For the conceptual model of bioconvection in a porous
medium, the governing equations for unsteady flow in a
porous medium are obtained by volume averaging the
equations of Pedley et al. [7] according to the theory of
Whitaker [8] as described in Kuznetsov and Jiang [5].
The replacement of the Laplacian viscous terms with the
Darcian terms describing viscous resistance in a porous
medium is the basic concept of this approach [20]. The
validity of Darcy’s law in the porous medium bioconvec-
tion model is therefore assumed similar to that in a natural
convection model in a layer being heated from below.

The following hypotheses are also assumed in order to
ensure that gravitactic behavior is not disturbed: (1) the
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Fig. 2. Physical description of the problem.
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porous matrix does not absorb microorganisms, (2) the
pore sizes are significantly larger than the microbial cell
sizes and the microorganism suspension is dilute; therefore,
the change of permeability of the porous matrix due to cell
deposition is negligible, (3) the possible local vorticity gen-
erated by flow through the pores does not affect the ability
of microorganisms to reorient themselves; (4) the mortality
and the multiplication of microorganism cells are
neglected, in other words, the cells are assumed not to
die or grow; the number of cells is therefore constant.

We consider a 2D anisotropic porous layer confined
between four impermeable walls with a height H and length
L, containing an initial density of gravitactic microorgan-
isms �n, i.e. swimming vertically upwards, with a mean con-
stant speed ~V �c as shown in Fig. 2. The Cartesian
coordinates (OX, OY) are oriented with the unit vectors
~e1;~e2, respectively. We assume that all physical properties
of the fluid are constant except the density in the buoyancy
term of the Boussinesq approximation. The porous med-
ium is assumed anisotropic with a permeability tensor K.
It is also assumed that the suspension of microorganisms
is incompressible.

2.1. Dimensional governing equations

The dimensional governing equations of gravitactic bio-
convection in a 2D anisotropic porous medium are
described as follows:

r � ~V � ¼ 0 ð1Þ

� ~rP � � l

K
~V � þ~gq ¼ 0 ð2Þ

on
ot
þr � ðn~V �Þ þ r � ðn~V �cÞ ¼ Dcr2n ð3Þ

q ¼ q0ð1þ bðn� n0ÞÞ ð4Þ

where ~V � is the Darcy velocity, ~V �c and n are the mean neg-
ative gravitactic swimming speed and the concentration of
microorganisms, respectively. b = Dq#/q0 is considered as
the bioconvective expansion coefficient and q0 is the cell
density at the bottom layer of the media. Dc stands for
the cell diffusivity.
The parameter K in Eq. (2) is a second-order tensor
which is defined as follows [21]:

K ¼
K11 K12

K21 K22

� �
with

K12 ¼ K21 ¼ ðR� 1Þ cos h sin h

K11 ¼ R cos2 hþ sin2 h

K22 ¼ R sin2 hþ cos2 h

R ¼ K2=K1

8>>><
>>>:

ð5Þ
2.2. Initial and boundary conditions

Since the boundaries are impermeable, the normal com-
ponent of the velocity and the cell flux must be equal to
zero.

At t* = 0, we assume that the initial concentration is
uniform

nðX ; Y ; t�Þ ¼ nðX ; Y ; 0Þ ¼ �n ð6Þ

At the impermeable boundaries, the condition of zero-nor-
mal fluid velocity requires

X ¼ 0; L : V �X ¼ 0

Y ¼ 0;H : V �Y ¼ 0

�
ð7Þ

while the condition of zero-concentration flux is

~J � �~e ¼ ½�Dcrnþ nð~V � þ ~V �cÞ� �~e ¼ 0 ð8Þ
X ¼ 0; L : J �X ¼ �on=oX ¼ 0

Y ¼ 0;H : J �Y ¼ nV �c � Dcon=oY ¼ 0

�
ð9Þ

where~e is the unit normal vector to the boundaries.

2.3. Diffusive equilibrium state

For ~V �c ¼ ð0; V �cÞ, the system (1)–(4) under the initial and
boundary conditions equations (6)–(9) gives the following
steady state solution ~V � ¼ 0 and

n ¼
�n V �c H

Dc

� �
exp V �c H

Dc

� �
� 1

exp
V �c
Dc

Y
� �

ð10Þ

which satisfies the conservation of concentration

�n ¼ 1

LH

Z L

0

dX
Z H

0

nðX ; Y ; t�ÞdY ð11Þ

Let V c ¼ V �cH=Dc be the dimensionless cell velocity, then
Eq. (10) can be re-written as

n ¼ �nV ce
V c
H Y

eV c � 1
ð12Þ

from which we readily deduce the concentrations at the
bottom (Y = 0) and the top (Y = H) of the cavity

n0 ¼
V c

eV c � 1
�n; n1 ¼

V ce
V c

eV c � 1
�n ð13Þ

and
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Dn ¼ ðn1 � n0Þ ¼ �n
V �cH
Dc

� �
¼ �nV c ð14Þ
2.4. Dimensionless form in terms of the stream function w

The system of governing equations is normalized in
terms of the stream function w:

rðKrwÞ ¼ Ra oN
ox

oN
ot þr � ðN~V Þ þ r � ðN~V cÞ ¼ r2N

(
ð15Þ

By expanding the permeability tensor, the system of equa-
tions becomes:

K11
o2w
ox2 þ K12

o2w
oxoy þ K22

o2w
oy2 ¼ Ra oN

ox

oN
ot þr � ðN~V Þ þ r � ðN~V cÞ ¼ r2N

(
ð16Þ

with

K12 ¼ K21 ¼ ðR� 1Þ cos h sin h

K11 ¼ R cos2 hþ sin2 h

K22 ¼ R sin2 hþ cos2 h

R ¼ K2=K1

8>>><
>>>:

ð17Þ

where

~V ¼ ow
oy
;� ow

ox

� �
is the stream function definition: ð18Þ

Ra ¼ gK2HbDn
mDc

Rayleigh number based on K2 ð19Þ

From (14), the Rayleigh number is expressed in terms of �n
and Vc

Ra ¼ gK2Hb�nV c

mDc

ð20Þ

where K2 stands for the lateral permeability.

2.5. Dimensionless initial and boundary conditions

N ¼ N ¼ �n� n0

Dn
¼ eV c � V c � 1

ðeV c � 1ÞV c

at t ¼ 0 ð21Þ

w ¼ 0; oN=ox ¼ 0 at x ¼ 0; F ¼ L=H ð22Þ
w ¼ 0; oN=oy ¼ V cN þ V c=ðeV c � 1Þ at y ¼ 0; 1 ð23Þ

The system is then governed by five parameters: the aspect
ratio F of the cavity; the Rayleigh number Ra; the anisot-
ropy ratio R; the orientation angle h and evidently the
swimming speed of the microorganisms Vc.

The aspect ratio F will be held at 1, in order to simplify
the discussion and to specifically highlight the effects of
anisotropy and orientation of the principal axes. From
Eq. (15) and boundary conditions (22) and (23), it can be
proved that if w(x,y) and N(x,y) are the solutions at Ra,
R and h, then w(F � x,y) and N(F � x,y) are the solutions
at Ra, R and (p � h). We thus limit the study to the range
of h from 0 to p/2.
3. Linear stability analysis

Let the diffusion state ‘‘d” be perturbed by quantities
denoted by ‘‘1”, i.e.:

Nðx; y; tÞ ¼ N d þ N 1; wðx; y; tÞ ¼ w1;~V ðx; y; tÞ ¼ ~V 1 ð24Þ
with N ;w; ~V being the disturbed state with

N 1 � N d ¼
eV cy � 1

ðeV c � 1Þ ð25Þ

By substituting Eq. (24) in Eq. (16) and neglecting second-
order terms of perturbations, we obtain

K11
o2w1

ox2 þ K12
o2w1

oxoy þ K22
o2w1

oy2 ¼ Ra oN1

ox

oN1

ot þr:½Nd
~V 1 þ N 1

~V c� ¼ r2N 1

(
ð26Þ

or

K11
o2w1

ox2 þ K12
o2w1

oxoy þ K22
o2w1

oy2 ¼ Ra oN1

ox

oN1

ot � GðyÞ ow1

ox þ V c
oN1

oy ¼ r
2N 1

8<
: ð27Þ

with GðyÞ ¼ V ce
V cy

ðeV c � 1Þ ð28Þ

and the required boundary conditions for (27) are

w1 ¼
oN 1

ox
¼ 0 at x ¼ 0; F ð29Þ

w1 ¼
oN 1

oy
� V cN 1 ¼ 0 at y ¼ 0; 1 ð30Þ

The linear system (27) determines the initial evolution of
perturbations and the criterion for the onset of bioconvec-
tion. It is noted that when the cell velocity Vc ? 0,
G(y) ? 1, and the above equations (27) reduce to the
well-known equations governing the fixed-flux problem in
an anisotropic porous cavity studied by Mamou et al. [15].

When the angle h approaches zero, K1 = K2(R = 1), we
obtain the pure gravitactic bioconvection problem in an
isotropic porous medium treated by Nguyen-Quang et al.
[2] and Nguyen-Quang [3]. Our newly-developed numerical
code was successfully benchmarked using the results from
the limiting cases of pure gravitactic bioconvection and
thermal convection in an anisotropic porous medium
heated by heat flux.
4. Numerical solution approach

If the orientation angle h is non-zero, the solution of
Eqs. (27)–(30) is not limited to a single Fourier component
in either the vertical or horizontal directions; an analytical
process could therefore be tedious and offers no advanta-
ges. Hence, the finite-difference numerical method is used
for the linear stability analysis. The discretized equations
were derived by a central-differencing technique. By
arranging the discretized variables w1 and N1 in two 1D
vectors, the system (27) may be expressed under the form:
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AW1 � RaBT 1 ¼ 0

CW1 � DT 1 ¼ 0

�
ð31Þ

where A, B, C, D are M �M matrices whose components
are functions of the anisotropic permeability R, the orien-
tation angle of the principal axes h, and the microorganism
swimming speed Vc. M = (Mx � 2)(My � 2) with Mx and
My being grid numbers in the horizontal and vertical direc-
tions, respectively.

The system (31) is finally transformed into the eigen-
value problem:

ðE � kIÞW1 ¼ 0 ð32Þ

where I is the unit matrix and E = CA�1BD�1. In other
words, if k1 P k2 P � � � P kn are the eigenvalues of Eq.
(32), then Rac ¼ 1

k1
is the critical Rayleigh number, and

the eigenvector w1 corresponding to k1 represents the flow
pattern at the onset of bioconvection.

The precision of the critical Rayleigh number depends
on the grid resolution Mx and My. The choice of grid size
was adopted after mesh refinement tests. We accepted the
grid for which the variation in the solution was <5%.
Hence, the results presented in the following sections were
obtained with grids of 21 � 21 nodes (Dx = Dy = 0.032) for
a square enclosure (F = 1).

By letting the swimming velocity tend to zero, i.e. the
microorganisms become inanimate (immobile), our numer-
ical code was verified to converge to the thermoconvection
problem governed by the fixed-flux condition in an aniso-
tropic porous cavity studied by Mamou et al. [15] (see
Table 1). By letting the anisotropic angle h approach zero
and letting K1 = K2(R = 1), we obtained the pure gravitac-
tic bioconvection results studied by [2,3,12] (see Table 2).

The following choice of two representative values of
dimensionless microorganism velocities (Vc = 1 and 5) for
the present linear stability analysis is explained by the fact
that a universal stability curve is obtained by a normaliza-
tion based on the length scale Dc=V �c instead of the length
scale H in the case of swimming speeds higher than 1
Table 1
Validation of the code for the case Vc = 0

h = 0,
square
cavity

Rac, Mamou
et al. [15]

Rac, Kimura
et al. [22]

Rac of the present study
by letting Vc = 0

R = 10�4 p2 9.9497
R = 102 10.03R = 1003 1053
R = 1 22.9 22.9 22.92

Table 2
Validation of the code for the case h = 0 and K1 = K2 (R = 1)

Vc Ra�c according to
Kuznetsov and Jiang
converted in our
definition [5]

Ra�c by linear
stability analysis
Nguyen-Quang
et al. [2,12]

Ra�c in the present
study by letting
h = 0 and K1 = K2

(R = 1)

5 10.2 10.22
10 9.81 10.33 10.315
[3,12]. For this case, the renormalized Rayleigh number
Ra�c is used instead of the usual critical Rayleigh number
Rac according to the definition of (20). Nguyen-Quang
et al. [3,12] show that

Ra�c ¼ Rac=V c ð33Þ
With this formula, we can see that in the case of Vc = 1,
Ra�c ¼ Rac. To facilitate the following discussion, we will re-
fer only to Ra�c for both cases Vc = 1 and 5.

5. Results and discussion

The critical Rayleigh number Ra�c for the onset of
motion in a square cavity as a function of R in the case
of h = 0 is presented in Fig. 3 for Vc = 1 and 5. For a small
value of R, this value tends to 8.96 (Vc = 1) and to 2.62
(Vc = 5). The critical Rayleigh number Ra�c is observed to
linearly increase with R. Physically, an increase in R may
be interpreted as a decrease in the permeability K1, since
Ra�c is based on K2. From Darcy’s law, the velocity is pro-
portional to permeability; therefore any increase in perme-
ability is likely to hasten the onset of bioconvection. When
R is large enough, Ra�c tends asymptotically towards the
value 10.63R (for Vc = 1) and 2.522R (for Vc = 5).

The effects of the angle h on the critical Rayleigh num-
ber are shown in Fig. 4a (for Vc = 1) and Fig. 4b (for
Vc = 5). In the case of a low swimming speed (Vc = 1),
we observe that Ra�c reaches a minimum value. This ten-
dency is less clear when R tends to 1 and disappears at
R = 1 (Fig. 4a). In the case of a high swimming speed
(Vc = 5), Ra�c is observed to reach a maximum value. The
angle for the maximum value of Ra�c depends on R

(Fig. 4b).
The following example illustrates the case of R = 0.001

for both cases of Vc = 1 and 5 (Fig. 5). For V c ¼ 1;Ra�c
reaches the minimum value at h = 47� ðRa�c ¼ 8:135Þ, and
for V c ¼ 5;Ra�c reaches the maximum value at h = 26�
ðRa�c ¼ 3:2055Þ (Fig. 5).
Fig. 3. Effects of the anisotropy ratio R on Ra�c for Vc = 1 and 5.



Fig. 4a. Effects of the orientation angle h on Ra�c for Vc = 1 and for
various anisotropy ratios R.

Fig. 4b. Effects of the orientation angle h on Ra�c for Vc = 5 and for
various anisotropy ratios R.

Fig. 5. Effects of the orientation angle h on Ra�c for Vc = 1 and 5 and for
R = 0.001.

R =0.01R = 0.001 R = 1

Fig. 6a. Streamlines (above) and isoconcentration lines (below) at the o
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The morphology of bioconvection cells is discussed next.
The isolines (streamlines and iso-concentrations) of the
flow patterns for the onset of gravitactic bioconvection
are depicted in Figs. 6a and 6b (Vc = 1) and in Figs. 7a
and 7b (Vc = 5).

The cell pattern in the case of Vc = 1 is shown in Figs. 6a
and 6b. In Fig. 6a, the flow pattern at the onset of biocon-
vection is not affected by R < 320 when h = 0. The flow
therefore remains unicellular. When the value of R is equal
to or greater than 320, the flow becomes multicellular
(Fig. 6a).

In the case of Vc = 5 when h = 0, the flow remains uni-
cellular with R < 1.365. The flow becomes bicellular when
R is above 1.365 and becomes multicellular as R increases
(Fig. 7a).

The multicellular structure also depends on the orienta-
tion angle h when R 6¼ 1. Figs. 6b and 7b show that with
R = 0.001, flow is unicellular when h is <82.5� (for
Vc = 1) or <30� (for Vc = 5). In other words, the higher
the swimming speed Vc, the narrower the range of oblique
angle h for one cell flow pattern, i.e., the flow remains uni-
R = 1000R = 320

nset of bioconvection for different R in the case of Vc = 1, h = 0.



= 30θ o = 90θ o= 82.5θ o= 45θ o= 15θ o

Fig. 6b. Streamlines (above) and isoconcentration lines (below) at the onset of bioconvection for different h in the case of Vc = 1, R = 0.001.

R = 1000R = 10R = 1R = 0.001 R =0.1

Fig. 7a. Streamlines (above) and isoconcentration lines (below) at the onset of bioconvection for different R in the case of Vc = 5, h = 0.

= 15θ o
= 30θ o = 45θ o = 60θ o = 90θ o

Fig. 7b. Streamlines (above) and isoconcentration lines (below) at the onset of bioconvection for different h in the case of Vc = 5, R = 0.001.
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cellular at the angle h 2 [0�, 82.5�] for Vc = 1 and
h 2 [0�, 30�] for Vc = 5.

The flow pattern in all cases of Vc is independent of h
when R = 1.

6. Conclusions

From the above results, it may be concluded that:

� The swimming speed of gravitactic microorganisms
affects the critical stability of incipient bioconvection.
The critical Rayleigh number Ra�c in the case of swim-
ming speed Vc = 5 is less than the critical number in
the case of Vc = 1.
� Provided that h = 0� or h = 90�, the unicellular mor-

phology at the onset of bioconvection is affected by a
change in permeability when Vc = 1, and is more signif-
icantly affected when Vc = 5.
� A change either in permeability or angle of anisotropy sig-

nificantly influences the flow structure, provided the angle
h is neither 0� nor 90�, especially when the swimming
speed is high. The flow is enhanced in the diagonal region.
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� From our study, when R = 0.001, the unicellular mor-
phology is the preferred mode in the case of Vc = 1 in
the range of h 2 [0�, 82.5�] and in the range of
h 2 [0�, 30�] for Vc = 5.
� When h = 0, unicellular flow exists where R < 320 for

Vc = 1 or R < 1.365 for Vc = 5.
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